'90A, 'LS90 . . . Decade Counters
'92A, 'LS92 . . . Divide By-Twelve Counters
'93A, 'LS93 . . . 4-Bit Binary Counters

TYPES	TYPICAL
'90A	POWER DISSIPATION
'92A, '93A	145 mW
'LS90, 'LS92, 'LS93	130 mW
	45 mW

description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a threestage binary counter for which the count cycle length is divide-by-five for the '90A and 'LS90, divide-by-six for the '92A and 'LS92, and the divide-by-eight for the '93A and 'LS93.

All of these counters have a gated zero reset and the '90A and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the CKB input is connected to the Q_{A} output. The input count pulses are applied to CKA input and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A or 'LS90 counters by connecting the Q_{D} output to the CKA input and applying the input count to the CKB input which gives a divide-byten square wave at output QA_{A}.

SN5490A, SN54LS90 . . . J OR W PACKAGE
SN7490A . . . N PACKAGE SN74LS90 . . D OR N PACKAGE
(TOP VIEW)

SN5492A, SN54LS92 . . . J OR W PACKAGE
SN7492A . . . N PACKAGE SN74LS92 . . D OR N PACKAGE (TOP VIEW)

SN5493A, SN54LS93 . . . J OR W PACKAGE SN7493 . . . N PACKAGE SN74LS93 . . D OR N PACKAGE (TOP VIEW)

logic symbols ${ }^{\dagger}$

- 90

'92

'93A. 'LS93

${ }^{\dagger}$ These symbols are in accordance with ANSIIIEEE Std. 91-1984 and IEC Publication 617-12.

COUNT	OUTPUT			
	O_{0}	a_{C}	O_{8}	
0	L	L	L	L
1	L	L	L	
2	L	1	H	L
3	L	2	H	H
4	L	H	L	L
5		H	L	
6		H	H	L
7		H	H	H
8	H	L	L	L
9	H	L	L	

'92A. 'LS92 COUNT SEQUENCE
(Soe Note C)

COUNT	OUTPUT			
	0_{0}	O_{C}	a_{8}	$\mathbf{O}_{\boldsymbol{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	H	L	L	L
7	H	L	L	H
8	H	L	H	L
9	H	L	H	H
10	H	H	L	L
11	H	H	L	H

'92A, 'LS92, '93A, 'LS93 RESET/COUNT FUNCTION TABLE

RESET INPUTS		OUTPUT			
$R_{\mathbf{O}(1)}$	$\mathbf{R}_{\mathbf{0}(2)}$	$\mathrm{a}_{\mathbf{D}}$	$\mathrm{a}_{\mathbf{C}}$	$\mathrm{a}_{\mathbf{B}}$	$\mathrm{a}_{\mathbf{A}}$
H	H	L	L	L	L
L	X	COUNT			
X	L	COUNT			

NOTES: A. Output Q_{A} is connected to input CKB for BCD count.
B. Output Q_{D} is connected to input CKA for bi-quinary count.
C. Output Q_{A} is connected to input CKB
D. $H=$ high level, $L=$ low level, $X=$ irrelevant
'90A. 'LS90
BI-QUINARY (5-2)
(See Note B)

COUNT	OUTPUT $^{\prime}$			
	Q_{A}	Q_{D}	Q_{C}	a_{B}
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

'90A, 'LS90
RESET/COUNT FUNCTION TABLE

RESET INPUTS				OUTPUT		
$R_{0(1)}$	$\mathrm{R}_{0(2)}$	$\mathbf{R}_{\mathbf{9 (1)}}$	R9(2)	$\mathbf{O}_{\text {D }}$	$\mathrm{O}_{\mathrm{C}} \mathrm{O}_{\mathbf{B}}$	
H	H	L	X		L L	L
H	H	X	L		L L	L
x	X	H	H	H	L L	H
\times	L	x	L		COUNT	
1	x	L	x		COUNT	
L	x	x	L		COUNT	
\times	L	L	\times		COUNT	

'93A, 'LS93 COUNT SEQUENCE
(See Note C)

COUNT	OUTPUT			
	OD	a_{C}	O_{B}	$\mathbf{a}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

logic diagrams (positive logic)

'92A. 'LS92

'93A. 'LS93
('93A) |'L93]

The J and K inputs shown without connection are for reference only and are functionally at high level.
Pin numbers shown in () are for the 'LS93 and '93A and pin numbers shown in [] are for the 54L93.
schematics of inputs and outputs
'90A, '92A, '93A

EQUIVALENT OF EACH INPUT	TYPICAL OF ALL OUTPUTS

schematics of inputs and outputs (continued)
'LS90, 'LS92, 'LS93

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple emitter transistor. For these circuits, this rating applies between the two R_{0} inputs, and for the '90A circuit, it also applies between the two $\mathrm{R}_{\mathbf{g}}$ inputs.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\#All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\prime \prime} \mathrm{C}$.
§Not more than one output should be shorted at a time.
"OA outputs are tested at $\mathrm{I}_{\mathrm{A}} \mathrm{OL}=16 \mathrm{~mA}$ plus the timit value for I_{L} for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.
NOTE 3: ' CC is measured with all outputs open, both R_{0} inputs grounded fallowing momentary connection to 4.5 V , and all other inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		'90A			'92A			'93A		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	CKA	Q_{A}	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \\ & \text { See Figure } 1 \end{aligned}$	32	42		32	42		32	42		MHz
	CKB	O_{B}		16			16			16			
tPLH	CKA	O_{A}			10	16		10	16		10	16	ns
TPHL					12	18		12	18		12	18	
tPLH	CKA	Q_{D}			32	48		32	48		46	70	ns
tPHL					34	50		34	50		46	70	
tPLH	CKB	a_{B}			10	16		10	16		10	16	ns
tPHL					14	21		14	21		14	21	
tPLH	CKB	O_{C}			21	32		10	16		21	32	ns
tPHL					23	35		14	21		23	35	
tPLH	CKB	Q_{D}			21	32		21	32		34	51	ns
tPHL					23	35		23	35		34	51	
tPHL	Set-to-0	Any			26	40		26	40		26	40	ns
tPLH	Set-to-9	$\mathrm{O}_{A} \cdot \mathrm{Q}_{\mathrm{D}}$			20	30							ns
${ }_{\text {tPHL }}$		$\mathrm{O}_{\mathrm{B}} \cdot \mathrm{O}_{\mathrm{C}}$			26	40							

[^0]absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			$\begin{aligned} & \text { SN54LS90 } \\ & \text { SN54LS92 } \end{aligned}$			SN74LS90 SN74LS92			UNIT			
			MIN	TYP\#	MAX	MIN	TYP \ddagger	MAX							
$V_{\text {IH }}$	High-level input voltage											2			V
$V_{\text {IL }}$	Low-level input voltage					-1.5			0.8-1.5			v			
$V_{\text {IK }}$	Input clamp voltage		$V_{C C}=M I N,$	$\mathrm{I}_{1}=-18 \mathrm{~mA}$					\checkmark						
V_{OH}	High-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=-400 \mu \mathrm{~A} \\ \hline \end{array}$			2.5	3.4					2.7	3.4		\checkmark
VOL Low-level output voltage			$\begin{array}{ll} V_{\mathrm{CC}}=M \mathrm{MIN}, & V_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=V_{\mathrm{IL}} \text { max. } \end{array}$		$1 \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v			
			$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5						
11	Input current at maximum input voltage	Any reset			$V_{C C}=$ MAX, $\quad V_{1}=7 \mathrm{~V}$					0.1			0.1	mA	
		CKA	$v_{C C}=$ MAX,	$v_{1}=5.5 \mathrm{~V}$				0.2			0.2				
		CKB						0.4			0.4				
I / H	High-level input current	Any reset	$V_{C C C}=$ MAX,	$V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
		CKA						40			40				
		CKB						80			80				
IIL	Low-level input current	Any reset	$V_{C C}=M A X, \quad V^{\prime}$	$v_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
		CKA						-2.4			-2.4				
		CKB						-3.2			-3.2				
los	Short-circuit output current§		$V_{C C}=$ MAX			-20		-100	-20		-100	mA			
'cc Supply current			$V_{C C}=$ MAX, \quad Se	See Note 3	'LS90		9	15		9	15	mA			
			'LS92			9	15		9	15					

[^1]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS93			SN74LS93			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$\mathrm{V}_{\text {IH }}$	High-level input voltage								2			2			V
$V_{1 L}$	Low-level input voltage							0.7			0.8	V			
VIK	Input clamp voltage		$V_{C C}=$ MIN, $\quad l_{1}=-18 \mathrm{~mA}$					-1.5			-1.5	V			
V_{OH}	High-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & I_{O H}=-400 \mu A \end{array}$			2.5	3.4		2.7	3.4		V			
VOL Low-level output voltage			$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max & \\ \hline \end{array}$		$1 \mathrm{OL}=4 \mathrm{~mA}{ }^{\text {d }}$		0.25	0.4		0.25	0.4	V			
			$1 \mathrm{OL}=8 \mathrm{mAI}$					0.35	0.5						
11	Input current at maximum input voltage	Any reset			$V_{C C}=$ MAX, $\quad V_{1}=7 \mathrm{~V}$	$V_{1}=7 \mathrm{~V}$				0.1			0.1	mA	
		CKA or CKB	$V_{C C}=M A X$.	$V_{1}=5.5 \mathrm{~V}$				0.2			0.2				
IIH	High-level input current	Any reset	$V_{C C}=$ MAX	$V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
		CKA or CKB						40			80				
IIL	Low-leve! input current	Any reset	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
		CKA						-2.4			-2.4				
		CKB						-1.6			-1.6				
	Short-circuit output current §		$V_{C C}=$ MAX			-20		-100	-20		-100	$m A$			
ICC Supply current	Supply current		$V_{C C}=\mathrm{MAX}, \quad$ See Note 3				9	15		9	15	mA			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
I Q_{A} outputs are tested at specified $1 O L$ plus the limit value for IIL for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.
NOTE 3: ICC is measured with all outputs open, both R_{0} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER\#	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS90			'LS92			'LS93			UNIT
				MIN TYP MAX			MIN	TYP	MAX	MIN TYP MAX			
$f_{\text {max }}$	CKA	$\mathrm{Q}_{\text {A }}$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$ See Figure 1	32	42		32	42		32	42		MHz
	CKB	O_{B}		16			16			16			
${ }^{19}$ LH	CKA	O_{A}			10	16		10	16		10	16	ns
${ }_{1} \mathrm{PHL}$					12	18		12	18		12	18	
${ }^{\text {PLLH }}$	CKA	O_{D}			32	48		32	48		46	70	ns
${ }^{\text {P PHL }}$					34	50		34	50		46	70	
${ }^{\text {P PLH }}$		B			10	16		10	16		10	16	ns
${ }^{\text {PPHL }}$	CKB				14	21		14	21		14	21	ns
${ }^{1} \mathrm{PLH}$					21	32		10	16		21	32	ns
PHL	CKB				23	35		14	21		23	35	
${ }_{\text {PPLH }}$					21	32		21	32		34	51	ns
tPHL	CKB	${ }^{0}$			23	35		23	35		34	51	ns
${ }^{\text {tPHL }}$	Set-to 0	Any			26	40		26	40		26	40	ns
${ }^{1} \mathrm{PLH}$		O_{A}, O_{D}			20	30							ns
tPHL		$\mathrm{Q}_{\mathrm{B}}, \mathrm{O}_{C}$			26	. 40							

[^2]PARAMETER MEASUREMENT INFORMATION
 RESET-TO-9
(See Note D)
RESET-TO-O
RESETS UTS
IN P
(See Note D)
Clock A
L H7 dz
output $\mathbf{a}_{\mathbf{A}}$
AND
CLOCK B INPUT
CPL 7
-
OUTPUT a_{B}
(See Note E)

FIGURE $1 A$ B. C_{L} includes probe and jig capacitance.

$$
\begin{aligned}
& \text { 5. All diodes are } 1 \mathrm{~N} 3064 \text { or equivalent. } \\
& \text { 5. Each reset input is tested separately with the other reset at } 4.5 \mathrm{~V} \text {. }
\end{aligned}
$$

for '90A, '92A, '93A, $\mathrm{t}_{\mathrm{r}} \leq 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$, PR $=1 \mathrm{MHz}$, duty cycle $=50 \%, Z_{\text {out }} \approx 150$, 'LS92, 'LS93, $\mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$, PR $=1 \mathrm{MHz}$, duty cycle $=50 \%, Z_{\text {out }} \approx 50$ ohms
D. Each reset input is tested separately with the other reset at 4.5 V .
F. For '90A, '92A, and '93A; $V_{\text {ref }}=1.5 \mathrm{~V}$. For 'LS90, 'LS92, and 'LS93; $V_{\text {ref }}=1.3 \mathrm{~V}$.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input pulses are supplied by a generator having the following characteristics:
for '90A, '92A, '93A, $\mathrm{t}_{\mathrm{r}} \leq 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$, PRR $=1 \mathrm{MHz}$, duty cycle $=50 \%, \mathrm{Z}_{\text {out }}=50 \mathrm{ohms}$;
for 'LS90, 'LS92, 'LS93, $\mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{tf}_{\mathrm{f}} \leq 5 \mathrm{~ns}$, PRR $=1 \mathrm{MHz}$, duty cycle $=50 \%, \mathrm{Z}_{\text {out }}=50 \mathrm{ohms}$.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N3064 or equivalent.
D. Each reset input is tested separately with the other reset at 4.5 V .
E. Reference waveforms are shown with dashed lines.
F. For '90A. '92A, and '93A; $V_{\text {ref }}=1.5 \mathrm{~V}$. For 'LS90. 'LS92, and 'LS93; $V_{\text {ref }}=1.3 \mathrm{~V}$.

FIGURE 18

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
7603201CA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
7603201DA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
7700101CA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
7700101DA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
JM38510/31501BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/31501BDA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
JM38510/31502BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/31502BDA	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
SN5490AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN5492AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN54LS90J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SN54LS93J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SN7490AN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN7492AN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN7493AN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS90D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS90DE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS90DR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS90DRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS90N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS90NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS92D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS92DE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS92DR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS92DRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS92N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS92N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS92NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS92NSR	ACTIVE	SO	NS	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS92NSRE4	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS93D	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS93DE4	ACTIVE	SOIC	D	14	50	Green (RoHS \&	CU NIPDAU	Level-1-260C-UNLIM

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
	no Sb/Br)							
SN74LS93DR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS93DRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS93N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS93N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS93NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS93NSR	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS93NSRE4	ACTIVE	SO	NS	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SNJ5490AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ5490AW	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ5492AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ5492AW	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ54LS90J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54LS90W	ACTIVE	CFP	W	14	1	TBD	A42	N/ A for Pkg Type
SNJ54LS93J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54LS93W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AB.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^3]Copyright © 2006, Texas Instruments Incorporated

[^0]: ${ }^{\prime} f_{\text {max }} \equiv$ maximum count frequency
 $t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output

[^1]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
 \boldsymbol{Q}_{A} outputs are tested at specified ${ }^{\prime}$ OL plus the limit value of I_{L} for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.
 NOTE 3: 'CC is measured with all outputs open, both R_{O} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.

[^2]: \#fmax maximum count frequency
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL mpropagation delay time, high-to-low-level output

[^3]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

